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Abstract 
 
We present a new, effective and flexible event-based hybrid BN modelling method for reliability 
assessment that scales up to large, complex dynamic systems. By incorporating a recent powerful 
approximate inference algorithm for hybrid BNs, involving dynamically discretising the domain of all 
continuous variables, approximated solutions for both static and dynamic constructs are obtained 
simultaneously rendering unnecessary the use of modularisation techniques. Continuous and discrete 
nodes can be included in the model to represent the continuous failure times of system components and 
discrete reliabilities of the system (or any subsystem) for a given target requirement, respectively. 
Unlike other approaches (which tend to be restricted to using exponential distributions), our new 
approach is able to solve any configuration of static and dynamic gates with general parametric or 
empirical time-to-failure distributions, without recourse to numerical integration techniques or 
simulation methods. Furthermore, the diagnostic analysis capabilities of the BN combined with the 
dynamic discretisation algorithm allow also to obtain estimates of the parameterised marginal failure 
distribution (for the root nodes), either using available raw failure data or as prior information according 
to expert knowledge. No exact expression for the marginal is needed and no conditional probability 
tables need to be completed. Our BN framework allows a compact representation of the event-
dependent failure behaviours characteristic of fault-tolerant systems, avoiding the state space explosion 
problem of the Markov Chain based approaches. Our BN framework is mathematically sound and at the 
same time simple enough to allow the interaction with domain experts and decision makers. Sensitivity, 
uncertainty, diagnosis, common cause failures, and warranty analysis can also be easily performed 
within this framework.  
 

1. Introduction 

The increasing complexity of the component dependencies and failure behaviours (e.g., sequence-
dependent failures, functional dependencies, stand-by spares, etc.) of today’s real-time safety-critical 
systems has led to an increasing interest in flexible modelling frameworks for reliability analysis. 
Space state based approaches such as dynamic fault trees (DFTs), (Dugan et al. 1992, 1993), have 
shown to increase the modeling power of traditional combinatorial models, like static Fault Trees 
(FTs), (Watson 1961, Schneeweiss 1999), by taking into account not only the combinations but also 
the sequential ordering of occurrence of component failures’ that led to system failure. However, in 
practice, DFTs have severe limitations, such as the problem of space state explosion and the inability 
to handle non-exponential failure distributions.  
 
A number of recent studies have attempted to use Bayesian Networks (BNs), (Pearl 1993, Jensen 
2001), and their extension for time-series modelling known as Dynamic  Bayesian Networks (DBNs), 
(Ghahramani 1998, Murphy 2002), to provide a unified framework for reliability modelling and 
analysis of complex systems. On one hand, BNs have been shown to increase both the modelling 
capabilities and analysis power of combinatorial based models, by including new modelling features - 
like multi-state variables, noisy gates, common cause failures, and simple sequentially dependent 
failures - and general a posteriori diagnostic analysis (Torres-Toledano and Sucar 1998, Portinale and 
Bobbio 1999, Bobbio et al. 2001, Langseth and Portinale 2006).  On the other hand, the DBN 



framework allows a compact representation of the temporal (and functional) dependencies among the 
system components and event-dependent failure behaviours, characteristic of fault-tolerant systems, 
avoiding the state space explosion problem of the Markov Chain based approaches to DFT analysis 
(Montani et al. 2005, Weber and Jouffe 2003). We have applied BNs to a range of real-world 
dependability-type problems (Neil et al. 2001, 2003). In particular, in the area of software system 
reliability, we have shown the advantages of BNs over traditional methods for predictive and 
diagnostic reasoning (Fenton and Neil 1999, Fenton et al. 1998, 2001, 2002).   
 
Another important benefit of BNs is that they enable us to integrate information from different 
sources, including experimental data, historical data, and prior expert opinion. This is particularly 
useful for the reliability assessment of fault tolerant systems, where failures in test and field 
operations, traditionally used as a source of information for system evaluation, is prohibitively 
expensive or even impossible because the state-of-knowledge about large complex systems is a 
collection of heterogeneous and diverse source of information, comprising generally sparse data on 
individual subcomponents  
 
Despite the advances summarised above, the previous application of BNs as mainstream technology 
for reliability modelling problems remains modest. One of the main barriers to applying BN more 
widely in reliability analysis is that previous attempts to apply BN models to reliability assessment 
have not adequately handled the necessary ‘hybrid’ models required in real real-world applications, 
i.e. models containing both continuous and discrete variables, with general static and time-dependent 
failure distributions. To date the Bayesian Network (BN) framework has only partially addressed these 
limitations.  
 
In this paper we present a simple event-based hybrid BN modelling method for reliability assessment 
that scales up to large, complex dynamic systems. The new approach incorporates a recent powerful 
approximate inference algorithm for hybrid BNs, based on a process of dynamic discretisation of the 
domain of all continuous variables in the BN, which allows it to overcome most of the limitations of 
both space-state based reliability models and previous BN approaches. The main significant novel 
research contributions provided in this work are:  
 
• Solving any configuration of static and dynamic gates with any parametric or empirical time-to-

failure distributions occurring in practical applications, without using numerical integration 
techniques or simulation methods (Section 2). 

• Modelling system state and failure times together, because of the ability to combine discrete and 
continuous nodes in the BN model (Section 3). 

• Offering a suitable framework for Bayesian reliability modelling and data analysis, allowing us to 
integrate information from multiple sources at different levels of granularity, as well as expert 
opinion (Section 4). 

 
All the example models shown in this paper are built and executed using the commercial general-
purpose Bayesian Network software tool AgenaRisk [1], in which our dynamic discretisation 
algorithm is now implemented. 
 

2. A New BN Approach To Reliability Modelling Using Dynamic Discretisation 

A Bayesian Network (BN), (Pearl 1993, Jensen 2001), encodes all relevant information contained in a 
full probability model. It consists of 1) a directed acyclic graph (DAG), with nodes representing 
random variables and directed arcs (from parent to child) representing causal or influential 
relationships between variables, and 2) conditional probability distributions (CPDs), which define the 
probabilistic relationship of each node given its respective parents. Nodes without parents, called root 
nodes, are described according to their marginal probability distributions.  



 
In our BN reliability model, continuous random variables represent the time-to-failure of the 
components of the system. These can be either the time-to-failure of elementary components of the 
system (root nodes), or the time-to-failure of the fault tree constructs (non-root time-to-failure nodes). 
In the latter case, the nodes in the BN are connected by means of incoming arcs to several 
components’ time-to-failures and are defined as deterministic functions of the corresponding input 
components’ time-to-failure. Discrete random variables are also included in the model to represent the 
state of the system (or any subsystem) at a particular time instance. The resulting model is a hybrid 
BN containing both continuous as well as discrete variables. 
 
Once the BN structure and nodes probability distributions have been defined, reliability analysis can 
be carried out using standard BN inference algorithms (Lauritzen et al. 1988, Jensen et al. 1990). 
Unfortunately, for hybrid BNs containing mixtures of discrete and continuous nodes with non-
Gaussian distributions, exact inference becomes computationally intractable. The traditional approach 
to handling (non-Gaussian) continuous nodes is static: you have to discretise them using some pre-
defined range and intervals. However, this approach is unacceptable because it assumes the analyst 
can identify and appropriately discretise the high-density regions for each variable in the model, and 
do so in advance of any inference taking place. This is cumbersome, error prone and highly inaccurate.   
 
To overcome this problem we have developed a new and powerful approximate algorithm for 
performing inference in hybrid BNs. We use a process of dynamic discretisation of the domain of all 
continuous variables in the BN and using entropy error (Kozlov and Koller 1997) as the basis for 
approximation. A detailed description of the dynamic discretisation algorithm is given in (Neil et al. 
2006). In outline, the algorithm follows these steps: 
 

1. Convert the BN to a Junction Tree (JT) and choose an initial discretisation for all continuous 
variables. 

2. Calculate the CPD of each node given the current discretisation. 
3. Enter evidence and perform global propagation on the JT, using standard JT algorithms 

(Jensen et al. 1990). 
4. Query the BN to get posterior marginals for each node, compute the approximate relative 

entropy error, and check if it satisfies the convergence criteria. 
5. If not, create a new discretisation for the node by splitting those intervals with highest entropy 

error. 
6. Repeat the process by recalculating the NPTs and propagating the BN, and then querying to 

get the marginals and then split intervals with highest entropy error. 
7. Continue to iterate until the model converges to an acceptable level of accuracy.  

 
This dynamic discretisation approach allows more accuracy in the regions that matter and incurs less 
storage space over static discretisations. Moreover, we can adjust the discretisation any time in 
response to new evidence to achieve greater accuracy. By efficiently integrating our iterative 
approximation scheme within existing robust propagation algorithms on BN architectures, such as 
Junction Tree, we are able to perform robust inference analysis on complex systems.  
 
As stated before, in order to fully define our BN model, we must specify the marginal probability 
density functions of all root nodes and the conditional probability distributions (CPDs) of all non-root 
nodes. In our framework, any standard parametric density or empirical function can be used as 
marginal time-to-failure distributions for the root nodes. These can be either obtained as prior 
information according to expert knowledge, or estimated in a previous reliability data analysis step if 
some failure data is available. In Section 3 we explain how to perform parameter learning in our BN 
framework.  
 



The CPDs for both static and dynamic gates are probability distributions of variables that are a 
deterministic function of its parents, and are determined according to the type of Fault Tree (FT) 
construct. In general, estimating the probability distribution of a variable that is a deterministic 
function of its parents represents a major challenge for most BN software. For some simple 
configurations, such as static gates or dynamic gates with exponential time-to-failure components 
distributions, an exact closed-form analytical expression can be derived for the CPDs. However, for 
general components’ failure distributions, a closed-form expression for the CPDs of dynamic gates 
may not be feasible, so numerical approximation methods need to be applied. In our framework, once 
we have determined the marginal time-to failure distributions for the basic components (root nodes), 
the CPDs for the DFT constructs (non-root time-to-failure nodes) are automatically estimated by 
modelling them as an approximate mixture of Uniform distributions, and use the dynamic 
discretisation algorithm to fit a histogram composed of Uniform distributions. No numerical 
integration techniques or simulation methods are required.  
 
From the estimated failure distributions of the DFT constructs, we also obtain estimates for the 
reliability of the system for any mission time. Specifically, let the continuous random variable Sτ  
represents the time-to-failure of a system S, and the discrete child node, tS , with an incoming arc from 

Sτ , represents the state of the system (or any subsystem) at a particular time instance. Once we have 
estimated the probability density function (PDF) of Sτ , denoted by 

S
fτ , the CPD for the discrete node 

C, which defines the probability distribution of the system states at a given time t, can be 
automatically computed from the system time-to-failure distribution (e.g., 

( ) ( ) ( )
0 S

t

t SP S fail P t f u duττ= = ≤ = ∫ ). Other metrics of interest can also be automatically derived. 

These include mean time to failure (MTTF), and the warranty periods, for which analytical 
expressions might not be obtainable . 
 

3. BN Reliability Modelling 

We now illustrate how our BN formalism, which combines dynamic discretisation with robust 
propagation algorithms on junction tree structures, can be used to perform DFT-like modelling and 
reliability data analysis of a real-world fault-tolerant system. The example provided in this section is 
the CPU module of the Hypothetical Cardiac Assist System (HCAS), designed to treat mechanical and 
electrical failures of the heart. A detailed description of the system is given in (Boudali and Dugan 
2006). It consists of three sub modules: a trigger (T ), a Warm Standby (WSP) gate (CPU ), and a 
Functional Dependency (FDEP) gate (CPUT ). The trigger consists of a crossbar switch ( CS ) and a 
system-supervision (SS ). The CPU unit is a warm standby configuration with primary component P  
and secondary B . The CPU unit is also functionally dependent on the trigger component: the failure 
of either CS  or SS  causes the failure of the CPU unit.  
 
The BN model for the CPU module of the HCAS is shown in Figure 1. The time-to-failure of the fault 
tree constructs, connected in the model by means of incoming arcs to the components’ time-to-
failures, are defined as deterministic functions of the corresponding input components’ time-to-failure. 
In this example, the CPUT  node in the BN models the time to failure of the FDEP gate with trigger 
T  and dependent event CPU . For non-repairable systems with perfect coverage (Dugan et al. 1992), 
the FDEP gates can be modelled as OR gates, therefore the time-to failure of the Trigger and CPUT 
gates, Tτ  and CPUTτ , are defined as a function of the times to failure of the input components by 
 

{ }
{ }

min ,
min ,

T CS SS

CPUT CPU T

τ τ τ
τ τ τ

=
=  (1) 



 
where CSτ , SSτ , CPUτ , and Tτ  represent the time-to-failure of CS , SS , CPU , and T , respectively. 
On the other hand, for the Warm spare redundancy CPU unit, each operation mode of the spare 
components B is represented by its failure distribution, (with the hazard rate of the spare component 
lesser in standby mode than in active mode). Thus, the time-to-failure of the CPU unit, CPUτ , is in turn 
given by (see (Marquez et al 2007) for details): 
 

if 
if 

sb
P B P

CPU act sb
P B B P

τ τ τ
τ

τ τ τ τ

 <
= 

+ >
 (2) 

 
where Pτ , sb

Bτ , and act
Bτ  represent the time-to-failure of the primary component, and the spare 

component when in standby mode and active mode, respectively. Notice that the above formula is no 
longer valid if the failure distribution of the spare component is not exponential, as for components 
that have already accumulated some operation time in its wearout region (non-exponential failure 
distribution), the probability of failure during the next mission time depends upon the prior operating 
time. In this case, we need to include in the above expression the accumulated operation time of the 
spare component when it becomes active, had it been operating in the active mode since the start of 
the mission (Marquez et al 2007).  We also have included in the model a binary node Reliability 
CPUT, with an incoming arc from CPUTτ , representing the state of the system at a mission time t hours. 
The NPT for this discrete node give us an estimate of the reliability of the system at a given time. This 
is computed from the CPUT time-to-failure by ( ) ( )S CPUTR t P tτ= > .  
 
Once we have defined the marginal time-to failure distributions for the basic components, the CPDs 
for the DFT constructs are automatically estimated by modelling them as an approximate mixture of 
Uniform distributions and use the dynamic discretisation algorithm to fit a histogram composed of 
Uniform distributions (Marquez et al 2007). No analytical calculation needs to be performed and no 
tables need to be populated. The FT-like analysis is then carried out using our new approximate 
algorithm for performing inference in hybrid BNs. By running the model for 25 iterations, using 
fictitious input data, we obtain the reliability of the system at a mission time 610t =  hours, which is 
0.594, and summary statistics for time to failure, 112 and . . 67HCAS HCASMTTF s d= = .  

4. Data Analysis 

In order to fully define the model, the parameters of the marginal time-to-failure distributions of the 
root nodes need to be specified. In this example, we assumed that cross switch component (CS ) is 
exponentially distributed, and the system-supervision (SS ), and the primary (P ) and secondary ( B ) 
components of the CPU unit follow a Weibull distribution. All the parameters of the failure 
distributions for the input components are assumed unknown. The values of these parameters can be 
either obtained as prior information according to expert knowledge, or estimated in a previous 
reliability data analysis step if some failure data is available. Here, we show how Bayesian data 
analysis can be carried out to compute the unknown parameters of the components failure distribution, 
using both, historical data resulting from tests conducted on similar components and expert 
knowledge. We then input the result into a reliability model to compute system level reliability.  
 
We conduct the Bayesian parameter estimation using some fictitious time to failure data for each of 
the components of the HCAS system, which is implemented using the dynamic discretisation 
algorithm available in the AgenaRisk software. Furthermore given that the target reliability for HCAS 
is 106 hours, and direct testing to these reliability levels would be infeasible, we assume that failure 



data has been obtained by accelerated life testing. Hence the TTF estimates and predictions throughout 
the model are given in units of 104 hours. 
 

 
 
 

Figure 1. BN for the HCAS system showing marginal TTF , reliability distributions for primary 
components, gates and at system level superimposed on the BN nodes 

 



4.1 Parameter Estimation for Crossbar Switch Component using Exponential model 

Here we show how a hierarchical Bayesian data analysis can be carried out to compute the unknown 
hazard rate of CS  using historical data gathered from test conducted on different sets of units of five 
types of components, 1 5...B B  with similar failure behaviour to CS . Thus the untested component CS  
is considered to be exchangeable with the tested components. For example, the component of interest 
might be a 2 litres engine and the historical data might be the time-to-failure of similar cross bar 
switches, but ones with slight design variations.  
 
In order to assess the failure distribution of the similar components, we assume that a series of 
reliability tests have been conducted under the same operational settings for the first four components 

1 4...B B but that the failure data from component 5B  is right censored. In the case of 1 4...B B  the data 

resulting from these tests consist in the observed times-to-failures, { }, 1,...,4 and 1,...,ij it i j n= = , 

after a fixed period of testing time, of in  items of type i.  In the case of 5B  the data consists of time to 

failure intervals{ }5 52000 , and 1,...,jt j n> =  i.e. the tests were suspended after 2000 time units. For 

non-repairable systems the order of the data is immaterial. 
 
Our aim is to use the sequence of observed failure times and intervals to assess the failure distributions 
of each one of the similar components, from which we wish to estimate the posterior predictive failure 
distribution for CS . Thus, if in  independent tests were conducted on components of type i for a 
defined period of time T, the data result in in  independent time-to-failure, with underlying exponential 
population distribution: 
 

{ } ( )
1

~exp , 1,...,5in

ij ii
t iλ

=
=  (3) 

 
The unknown failure rates, iλ , of the iB  similar components are assumed exchangeable in their joint 
distribution, reflecting the lack of information - other than data - about the failure distribution of the 
components. The parameters iλ  are thus considered a sample from the conjugate gamma prior 

distribution, governed by unknown hyperparameters ( ),α β : 
 

{ } ( )5

1 ~ ,i i Gammaλ α β=  (4) 

 
To complete the specification of the hierarchical model, we need to assign a prior probability 
distribution to the hyperparameters ( ),α β . Since no joint conjugate prior is available when α  and β  
are both assumed unknown, their prior distributions are specified independently. In the absence of any 
additional information about the hyperparameters, we can assign them vague prior distributions, for 
example, by defining vague priors such as ( ) ( ) ( ) ( ) ( ), ~ 1.0 0.01,0.01P P P Exp Gammaα β α β= . 
However, because reliability data can be sparse and heavily censored, additional information in the 
form of expert judgement plays an important role in the definition of statistical reliability models. Here 
we choose illustrative distributions for shape and scale parameters, but in practice these might be 
elicited from experts: 
 

( ) ( )10~ 0,1,10 and log ~ 6, 3, 1Triangular Triangularα β − − −   (5) 

 



The prior distributions used for the hyperparameters might be based on past experience, and in this 
particular case: 
 

a) asking experts to use a triangular distribution is relatively easier compared to using other more 
complex distributions, and 

b) the parameters, ( ),α β , can be interpreted in terms of time to failure estimates respectively. So 

( )0,1,10Triangular has a modal failure count around 3 and decreasing probability of 
experiencing up to 10 failures, and this might be the range of values observed in past practice.  

Figure 2 shows the BN graph of the above model, with the marginal posterior distributions 
superimposed for each of the hyperparameter, ( ),α β , the failure rates of 1 5...B B , and CS , and the 
posterior predictive distribution of the time to failure of CS , CSTTF , shown in larger size. The relevant 
summary statistics for CSTTF  are 278 and . . 411CS CSMTTF s d= =  (the high standard deviation clearly 
shows the result of pooling the diverse data from similar components. Had we simply pooled the data 
as if it was from a common population with one single unknown parameter, the estimate of the 
standard deviation would have been over optimistic). 

 
Figure 2. Parameter learning BN for the CS component showing marginal 

posterior distributions for rate iλ , CSλ , hyperparamters, ( ),α β , and CSTTF  

 



4.2 Estimation of System Supervision, Primary, Secondary Active and Inactive Components 
using Weibull model 

 
Here we estimate parameters of the failure distribution of the System Supervision component, SS , 
using historical data gathered from six previous tests conducted on components with similar failure 

behaviour to SS . In this case, the time-to-failure data, { }6

1i it = , is assumed to be a sample of 
independent and identically distributed observations, from a two parameter Weibull distribution: 
 

{ } ( )6

1 ~ ,i it Weibull α β=  (6) 

 
A Bayesian inference approach is carried out, by assigning a prior distribution for the shape, α , and 
scale, β  parameters. This is based on engineering judgement about the reliability characteristics of 
the component: 
 

( )
( )

shape: ~ 1,2,5
scale: ~ 0,500,1000  

Triangular
Triangular

β
α

 (7) 

 
The prior summary statistics for SS  are 449 and . . 309SS SSMTTF s d= =  respectively.  The posterior 
predictive distribution of the time to failure of SS , SSTTF , after learning the parameters from the data, 
is shown in Figure 3 superimposed over the BN model. The posterior summary statistics for SS  are 

407 and . . 246SS SSMTTF s d= =  respectively. 
 
 

 
 

Figure 3: Parameter learning BN for the SS component showing  
marginal distributions for rate SSλ , hyperparameters, ( ),α β , and SSTTF  

 
The results for each of the Primary, Secondary Active and Secondary Inactive components are 
calculated using the same model as component SS . The failure distributions for the Primary and Spare 
Active components are assumed the same. The posterior summary statistics for each of the 
components are: 
 



• Primary Component — 129 and . . 188P PMTTF s d= =  
• Secondary Component Active — 129 and . . 188Bactive BactiveMTTF s d= =  
• Secondary Component Inactive — 358 and . . 159Binactive BinactiveMTTF s d= =  

 

5. Conclusions 

We have provided an overview of a new approximate inference algorithm designed for a general class 
of hybrid BNs. This dynamic discretisation algorithm (implemented in the AgenaRisk software) 
finally frees BN modellers from the burden (and inaccuracies) associated with having to statically 
discretise continuous nodes. Continuous and discrete nodes can be included in the model to represent 
the continuous failure times of system components and discrete reliabilities of the system (or any 
subsystem) for a given target requirement, respectively. Unlike other approaches (which tend to be 
restricted to using exponential distributions), our new approach is able to solve any configuration of 
static and dynamic gates with general parametric or empirical time-to-failure distributions, without 
recourse to numerical integration techniques or simulation methods. Furthermore, the diagnostic 
analysis capabilities of the BN combined with the dynamic discretisation algorithm allow also to 
obtain estimates of the parameterised marginal failure distribution (for the root nodes), either using 
some available raw failure data or as prior information according to expert knowledge. No exact 
expression for the marginal is needed and no conditional probability tables need to be filled. 
 
We have described how this approach enables us to estimate reliability of a complex system 
comprised of a variety of dynamic fault tree constructs, including functional dependency, OR and 
Warm Standby gates. Our approach provides a flexible modelling framework for reliability analysis, 
especially for dynamic fault trees (DFTs) and overcomes the severe limitations in competing DFT 
approaches, such as the problem of space state explosion and the inability to handle non-exponential 
failure distributions.  
 
Likewise we have illustrated how to use the dynamic discretisation algorithm to carry out complex 
data analysis tasks involving hierarchical models with non conjugate priors. The most common 
estimation strategy for such hierarchical models, where the resulting joint distribution of the associated 
model parameters cannot be evaluated analytically, has been to use intensive sampling algorithms, 
collectively known as Markov Chain Monte Carlo (MCMC) methods, from which approximate 
solutions can be obtained after drawing probably ten of thousand of dependent samples. We have 
shown how our scheme offers a powerful alternative solution to MCMC analysis for reliability 
problems even in the presence of censored data. 
 
Our BN framework is mathematically sound and at the same time simple enough and sufficiently easy 
to use to allow the interaction with domain experts and decision makers. Sensitivity, uncertainty, 
diagnosis, common cause failures, and warranty analysis can also be easily performed within this 
framework.  
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